

Starting point

"There is [. . .] no publication that allows a comprehensive interpretation of the research activities in the context of environment and sustainability [...]" (BMU 2019)

Goals and Content

(1) Generate an overview of publications which apply to ECS and AI

(2) Detect subfields and map each publication to a subfield

(3) Provide a first evaluation of the the existing literature

(4) Discuss further steps

General approach

Criteria for in-depth comparison

- We chose the most common criteria in AI / Machine Learning
- It is based on the typical AI workflow and taken from existing literature
- We focused particulary on the ability to replicate the results of a given publication

General criteria
Research Area
Title
Authors
Times Cited
Year
Countries
Туре
Journal
Conference
Keywords
Al methods in focus
Key notes
Outcome

Methodological criteria								
type of data	Kind of data is used in study							
sample size	size of dataset							
Input Selection								
Input Significance	methods for deciding which inputs to use in model							
Input Independence	methods for checking correlation among inputs							
Data Division								
Data Division	method for dividing data into train / test set							
Training [%]	Percentage of whole dataset used for training							
Test [%]	Percentage of whole dataset used for testing							
Validation	validation technique or percentage of dataset used for validation							
Model Building								
Hyperparameter tuning	methods for setting HPs							
NN architecture	if available, methods of determining NN architecture							
Evaluation & Reference								
Evaluation metrics	metrics used for model evaluation							
Reference model	reference for model developed in study							

Gathering the basic corpus

```
(TS = ("Artificial Intelligence") OR TS = ("Machine Learning") OR

TS = ("Deep Learning") OR TS = ("Artificial Neural Network*"))

AND

(WC = ("ENVIRONMENTAL SCIENCES") OR WC = ("WATER RESOURCES") OR WC = ("GEOSCIENCES MULTIDISCIPLINARY") OR WC = ("REMOTE SENSING") OR

WC = ("GREEN SUSTAINABLE SCIENCE TECHNOLOGY") OR

WC = ("GEOGRAPHY PHYSICAL") OR WC = ("AGRICULTURE MULTIDISCIPLINARY") OR

WC = ("ENVIRONMENTAL STUDIES"))
```

- We use the Web of Science for our overall corpus
- We filter it down with the given query
 - → This returns 18.254 records in November 2020
 - → ~ 10% of the overall Al literature in WoS

 We apply a the Smart Local Moving Algorithm from VOSviewer to create suitable clusters for the domain and then compare selected results indepth

Cluster Results

Cluster Results

cluster 1	cluster 2	cluster 3	cluster 4	cluster 5	cluster 6	cluster 7
sentinel	river	solar radia-	adsorption	soil	emission	landslide sus-
		tion				ceptibility map-
						ping
remote sens-	river basin	building	wastewater	rock	city	gis
ing						
forest	basin	energy	aqueous so-	blast	air quality	landslide
			lution			
hyperspectral	reservoir	energy con-	treatment	earthquake	ozone concen-	landslide sus-
image classi-		sumption			tration	ceptibility as-
fication						sessment
remote sens-	temperature	photovoltaic	water	mine	ozone	landslide sus-
ing image		system				ceptibility
Remote	Hydrology	Energy	Water	Geology	Atmospheric	Landslide
Sensing			Supply &		Science	Susceptibility
			Quality			

In-Depth

- Based on the 5 most cited studies in each cluster.
- In total 35 publications were compared
- Most studies are older; they range from 1995 to 2016

Publication history

Development of the percentage a year contributed to the whole of publications

Publications per year and field in Al

To summarize

- This work provides a first overview; it achieves its aim but more research is needed.
- Our results suggests that the field of AIECS is predominantly populated by domain researchers who use AI as a tool.
 - → Models are highly specific, not general purpose
- Many publications can not be reproduced and are therefore difficult to analyze and correctly evaluate.
- The field is growing at a very high speed older publications may not be truly representative of todays publications.
 - Almost a third of the examined publications, around 5600, were published in 2019 and 2020.

Thank you for your attention

Questions?

https://xkcd.com/1831/

Bundesministerium für Umwelt, Naturschutz und Nukleare Sicherheit (BMU)

"KI-Leuchttürme für Umwelt, Klima, Natur und Ressourcen"

Förderkennzeichen FKZ 67KI2048.

ramadhas (2006)

Artificial Intelligence and Environmental Sciences

citation network 2000-2009

VOS settings: 0.25 resolution 25 min. cluster size min. 5 citations 1265 items – 5 clusters Energy mellit (2005) kalogirou (2001)

ma lei (2009) rehman (2008)

25 min. cluster size

min. 5 citations 1117 items